
IrDA lite Library
for the OPL972x

Application Development Manual
IrDA library version:

 LOAV0104

2006, Opticon Sensors Europe BV

Introduction
The IrDA Library for the OPL972x provides Opticon’s OPL972x range of hand-held data collection terminals with
the possibility to exchange data over a wireless infrared IrDA connection with mobile phones, IrDA printers and
other infrared devices that support the IrDA protocol.

The IrDA library can be used for the following purposes:
• Establishing a wireless infrared connection with mobile phones that support IrDA

• to use the mobile phone as a wireless modem
• to send SMS messages
• (Send and receive files and emails by using the SMTP, POP and FTP protocols of the TCP/IP library for

the OPL972x using the GSM/GPRS network of the mobile phone. The TCP/IP library can be found in the C
development kit for the OPL972x.)

• Establishing a wireless infrared connection with mobile IrDA printers to print data
• Transferring data over a wireless IrDA connection with other IrDA devices that support the IrCOMM or IRLPT

protocol

The IrDA library can not be used for the following purposes:
• Setting up a connection between an OPL972x terminal and the infrared port of a laptop, PC or another

OPL972x terminal.
• Setting up a connection with IrDA devices that do not support the IrCOMM or IRLPT protocol

Important note:
The IrDA library for the OPL972x requires OS version LBxV0212 (or a later version), because
the IrDA library uses the OS timer functions:

• unsigned long GetSystemTime(void);

• void SetSystemTime(unsigned long time);

The use of these functions made this IrDA library compatible with the TCP/IP library for the
OPL972x, which can be found in the C development kit.

How to build an application using the library
To build an application, see the programming manual for the OPL-972x. The functions of the IrDA library can be
linked by adding the library to the link-command, e.g.

tulink startup.rel LOAV0104.LIB testprog.rel etc.

In all the source files that make use of the functions of the IrDA library, include the file “irda_lib.h”.

All the functions in the IrDA library are described in the following pages.

In Appendix 1 information is given on how the hardware must be set-up to establish an IrDA connection between
the OPL-972x and a mobile phone that can be used to transfer files to a remote PC.

In Appendix 2 an example program is included to demonstrate how a connection can made between an OPL-972x,
a mobile phone and an extern PC with a modem.
Because almost all the functions of this library are used in this program, it can be used as a useful reference guide
on how to use this library.

In Appendix 3 is a small trouble-shooting guide in case of communication problems.

General functions

com_open
Description Opens the given COM-port of the OPL972x terminal. If the IrDA port (port = 1) is

opened the IrDA stack is automatically initialised.
Syntax int com_open(int port, char abort_key)

Arguments port

abort_key

Number of the COM-port that must be opened
1 = IrDA port
2 = cradle (CRD9725)
3 = Bluetooth, serial profile (only on the OPL9724)
4 = Bluetooth, DUN (only on the OPL9724)

Specifies the key that can be used to abort the function.

Returns - IrDA port opened, stack initialised
- COM-port, other then the IrDA port, successfully

opened
- (syntax) error, i.e. no (compatible) IrDA device in range
- Aborted by user

0
0

-1
-2

Remarks This function must always be used (with port = 1) before the remaining functions
of this library can be used.
The OPL972x can’t connect with all hardware (mobile phones, laptops, printers
etc.) with IrDA capabilities, see Appendix 1.

com_close
Description Closes the given COM-port of the OPL-972x. If the IrDA port was opened, the

IrDA connection is closed as well
Syntax int com_close(int port, char abort_key)

Arguments port

abort_key

Number of the COM-port that must be opened
1 = IrDA port
2 = cradle (CRD9725)
3 = Bluetooth, serial profile (only on the OPL9724)
4 = Bluetooth, DUN (only on the OPL9724)

Specifies the key that can be used to abort the function.
Returns - COM-port closed

- Aborted by user
0
-2

Remarks This function can also be called if the IrDA stack wasn’t initialised.

irda_lib_version
Description Returns the library version string of this IrDA library

Syntax char *irda_lib_version(void)

Arguments -

Returns - pointer to a buffer, into which the version string is put

Remarks - the buffer size is 8 characters.
- the string is not zero-terminated.

irda_com_is_empty
Description Checks to see if there is still any data left in the send-buffer of the virtual comport,

that hasn’t been sent yet.
Syntax int irda_com_is_empty(void)

Arguments -

Returns - send-buffer is not empty
- send-buffer is empty

0
1

Remarks This function is intended to be used to check if all data has been send that has
been put in the send-buffer by the functions: ‘putcomF’ and ‘transmit_string_ir’.

Important:
If you need to wait until the IrDA comport buffer is empty by using a software loop,
make sure the loop contains the function call Delay(<value>), otherwise to IrDA
connection will be lost.

irda_com_is_full
Description Checks send-buffer of the virtual com-port to see if it is full or not.

Syntax int irda_com_is_full(void)

Arguments -

Returns - send-buffer is not full
- send-buffer is full

0
1

Remarks This function is intended to be used to check if send-buffer of the virtual comport is
full, so it can be determined whether the functions: ‘putcomF’ and
‘transmit_string_ir’ can be successfully called or not.

Important:
If you need to wait until the IrDA comport buffer is no longer full by using a software
loop, make sure the loop contains the function call Delay(<value>), otherwise to IrDA
connection will be lost.

IrDA_SetFlowControl

Description Enables/Disables the Flow control initialisation when establishing a connection
using com_open.

Syntax void IrDA_SetFlowControl(int on_off)

Arguments Execute Flow control initialisation at com_open()

Skip Flow control initialisation at com_open()

ON (default)

OFF
Returns -

Remarks Some IrDA devices don't accept Flow-control commands during the initialisation of
an IrDA connection. These commands can then be misinterpreted and can cause
the IrDA device to misinterpret these commands as data or to respond in an
unexpected way. This can result in unwanted (printed) data, a connection failure
or even a crash of the OPL972x. If this occurs, try adding the following line at the
start of the main() function of your application:

IrDA_SetFlowControl(OFF); // Disable FlowContol initialization of IrDA stack

get_comF
Description Attempts to read a byte from the IrDA connection before the timeout occurs. The

IrDA connection is maintained
Syntax int get_comF(int timeout, char abort_key)

Arguments timeout
abort_key

time = timeout x 20ms
Specifies the key that can be used to abort the function.

Returns - Successful, character value (00..FF) is returned
- Time out
- Aborted by user

>=0
-1
-2

Remarks Be sure that the IrDA connection was established by using the com-open()
function, before this function is called

put_comF
Description Sends a byte over the IrDA connection. The IrDA connection is maintained

Syntax Int get_comF(int timeout, char abort_key)

Arguments timeout
abort_key

= timeout x 20ms
Specifies the key that can be used to abort the function.

Returns - Successful
- Time out
- Aborted by user

0
-1
-2

Remarks Be sure that the IrDA connection is established by using the com-open() function,
before this function is called

Important:
Only use this function when a single character needs to be send to the secondary
IrDA device, because each character that’s being send using this function will be
wrapped in a separate IrDA data packet of about 60 bytes.
Sending more characters after one each other using this function will therefor result
in a very slow connection speed and the IrDA comport buffer will be full very quick. If
you need to send more data always of the function: transmit_string_ir()

transmit_string_ir
Description Transmits a string of characters over the IrDA connection and maintains the

connection
Syntax int transmit_string_ir(char *string, int len,

 char abort_key)
Arguments string

len
abort_key

String of characters
Length of the string
Specifies the key that can be used to abort the function.

Returns - Successful
- Time out
- Aborted by user

0
-1
-2

Remarks Be sure that the IrDA connection is established by using the com-open() function,
before this function is called

Important:
If you need to call transmit_string_ir multiple times in a row, use the functions
irda_com_is_empty or irda_com_is_full to check if all data has been successfully
send or to check if more data can already be send.

receive_string
Description Receives data until the passed string (CheckStr) occurs in the received data or

until a timeout has occurred. Also maintains the IrDA connection.
Syntax int receive_string(char *CheckStr, int timeout,

 char abort_key)
Arguments checkStr

timeout
abort_key

String of characters
Timeout value (x 20ms)
Specifies the key that can be used to abort the function.

Returns - Successful
- Time out or no match
- Aborted by user

0
-1
-2

Remarks If more than 512 characters are received before the CheckStr is matched to
function returns: ‘–1’.

Be sure that the IrDA connection is established by using the com-open() function,
before this function is called

Delay
Description Maintains the IrDA-connection during the period of this delay routine

Syntax void Delay(int time, char abort_key)

Arguments time
abort_key

delay time = time x 20ms
Specifies the key that can be used to abort the function.

Returns - Successful
- Aborted by user

0
-2

Remarks Be sure that the IrDA connection is established by using the com-open() function,
before this function is called

Appendix 1: Hardware set-up

The IrDA library can be used for the following purposes:
• Establish a wireless infrared connection with a mobile phone that support IrDA
• to use the mobile phone as modem
• to send SMS messages
• (Send and receive files and emails by using the SMTP, POP and FTP protocols of the TCP/IP library for the

OPL972x using the GSM/GPRS network of the mobile phone. The TCP/IP library can be found in the C
development kit for the OPL972x.)

• Establish a wireless infrared connection with a mobile IrDA printer to print data
• Transfer data over a wireless IrDA connection with other IrDA devices that support the IrCOMM protocol

The IrDA library can NOT be used for the following purposes:
• Setting up a connection between an OPL972x terminal and the infrared port of a laptop, PC or another

OPL972x terminal.
• Setting up a connection with IrDA devices that do not support the IrCOMM protocol

The IrDA software has been tested on the following models of mobile phones that support IrDA:
• Nokia 6210
• Nokia 7110
• Nokia 7650
• Nokia 9210
• Ericson T68.

Also the IrDA software has been tested on the following models of IrDA printers:
• Custom S’Print-I
• Canon BJC-50
• EXTECH S1500T

Note:
It can not be guaranteed that the software will work on other models of mobile phones, printers and other devices
that support IrDA.

The following hardware set-up can be used to establish an IrDA connection between an OPL972x terminal a mobile
phone and a remote PC.

[OPL972x] ßà [Mobile IrDA phone] ßà [Extern modem] ßà [PC running a serial communication program]
 (9600bps) (9600bps)

Before a connection can be established the mobile phone must be ready the receive IrDA-commands. This means
that the IrDA port of the mobile phone must be activated.

Note:
It’s not possible to establish a connection with certain types of mobile phones, like Nokia mobile
phones and the Ericson T68 within the first 15 to 30 seconds after the previous connection was
abnormally cancelled. For instance if the secondary device was removed from the line of sight
of the OPL972x terminal during the connection or after a failed connection attempt.

Appendix 2: Example program

The source code on the following pages is an example program that can be used to transfer a file from the
OPL972x terminal to a remote PC (with pro-comm plus in host-mode) by using an IrDA connection with a mobile
phone. In appendix 1 the hardware set-up for this program was explained.

All the functions of the library that are used in this application are listed below.

• com_open()
• com_close()
• get_comF()
• put_comF()
• transmit_string_ir()
• receive_string()
• Delay()

Note:
This example application does not include the actual sending of a file to pro-comm plus.
The complete version of this example application can be found in the software developers kit of
this IrDA library.

The following other IrDA demonstration applications can be requested at Option Sensors
Europe BV if desired:

LFB2933x.S32 : Graphical demonstration application that sends plain ASCII barcode data to IrDA
printers and other IrDA devices

LFB23790.S32 : Graphical demonstration application that sends barcode data in a file using a
mobile phone with IrDA to remote PC with a modem running Procomm Plus.

Example application

// **
// testIrDa version 1.0
// **

#include <stdio.h>
#include "lib.h"
#include "irda_lib.h"

#define WINDOWS 0
#define DOS 1

void IrDA_procomm_example (int procomm_version)
{

char telnr[] = "ATDT0230000000\r";
char f_name[] = "John\r";
char fl_name[] = "John Doe\r";
char l_name[] = "Doe\r";
char p_pass[] = "opticon\r";
char filename[] = "DEMO.TXT\r";
char d_descript[] = "Demo test bestand\r";
char r_reset[] = "ATZ\r";

char first_name[] = "rst";
char full_name[] = "ULL Name:";
char last_name[] = "ast name:";
char file_name[] = "ile name? ";
char correct[] = "correct";
char password[] = "ssword:";
char choice[] = "hoice? ";
char descript[] = "escription: ";

 char procedure[] = "rocedure...";
char complete[] = "FER COMPLETE";
char isOK[] = "K\0";

int num_length, error;

setfont(SMALL_FONT,NULL);

printf("\fInit irDa...\n");

if((error = com_open(1, Q1_KEY)))
goto error_label;

if((error = Delay(50, Q1_KEY)))
goto error_label;

transmit_string_ir(r_reset,4, Q1_KEY);

if((error = receive_string(isOK, 250, Q1_KEY)))
goto error_label;

printf("Calling %s\n",telnr+4);
transmit_string_ir(telnr,num_length, Q1_KEY);

if((error = Delay(500, Q1_KEY)))
goto error_label;\

printf("Waiting for reply...\n");

// procomm for windows
if(procomm_version==WINDOWS)
{

if((error = receive_string(full_name, 2000, Q1_KEY)))
goto error_label;

printf("Full name: ");
transmit_string_ir(fl_name,9, Q1_KEY);
printf("John Doe\n");

}
else

{
if((error = receive_string(first_name, 1250, Q1_KEY)))

goto error_label;

printf("First name: ");
transmit_string_ir(f_name,5, Q1_KEY);
printf("John\n");

if((error = receive_string(last_name,250, Q1_KEY)))
goto error_label;

printf("Last name: ");
transmit_string_ir(l_name,4, Q1_KEY);
printf("Doe\n");

}

if((error = receive_string(correct,500, Q1_KEY)))
goto error_label;

printf("Is this correct: ");
put_comF('Y', Q1_KEY);
printf("Yes\n");

if((error = receive_string(password,500, Q1_KEY)))
goto error_label;

printf("Password: ");
transmit_string_ir(p_pass,8, Q1_KEY);
printf("*******\n");

if((error = Delay(150, Q1_KEY)))
goto error_label;

if((error = receive_string(choice,500, Q1_KEY)))
goto error_label;

printf("Enter choice: ");
put_comF('U', Q1_KEY);
printf("Upload\n");

if((error = Delay(150, Q1_KEY)))
goto error_label;

if(procomm_version!=WINDOWS && (error = receive_string(choice,500, Q1_KEY)))
goto error_label;

printf("Enter choice: ");
put_comF('K', Q1_KEY);
printf("Kermit\n");

if((error = Delay(50, Q1_KEY)))
goto error_label;

// procomm for windos
if(procomm_version==WINDOWS)
{

transmit_string_ir(filename,10, Q1_KEY);
printf("File name: 'DEMO.TXT'\n");

if((error = Delay(100, Q1_KEY)))
goto error_label;

}
else // procomm for dos
{

if((error = receive_string(file_name,500, Q1_KEY)))
goto error_label;

transmit_string_ir(filename,10, Q1_KEY);
printf("File name: 'DEMO.TXT'\n");

if((error = receive_string(descript,500, Q1_KEY)))
goto error_label;

printf("Description:\n");
transmit_string_ir(d_descript,18, Q1_KEY);
printf("'Demo test bestand'\n");

if((error = receive_string(procedure,1200, Q1_KEY)))
goto error_label;

printf("Init file transfer\n");

if((error = Delay(50, Q1_KEY)))
goto error_label;

}

filename[8] = '\0';
printf("Transferring file...\n");

/* This example application does not include the actual sendig of a file to procomm
if((error = sendsw(filename, Q1_KEY)))

goto error_label;
*/
printf(“Sending of file has not be implemented in this application!!”);

if((error = receive_string(complete,500, Q1_KEY)))
goto error_label;

printf("Transfer complete\n");

if(procomm_version!=WINDOWS && (error = receive_string(choice,500, Q1_KEY)))
goto error_label;

else if((error = Delay(200, Q1_KEY)))
goto error_label;

printf("Enter choice: ");

put_comF('G', Q1_KEY);
printf("Goodbye\n");

if((error = Delay(250, Q1_KEY)))
goto error_label;

com_close(1, Q1_KEY);

setfont(LARGE_FONT,NULL);

return;

error_label:
printf("\nError %d occured",error);
Delay(50, Q1_KEY);
com_close(1, Q1_KEY);
setfont(LARGE_FONT,NULL);
return;

}

void main(void)
{

autopowerdown(ON, 18000); // 120 seconds on
cursor (AUTOWRAP);

for(;;)
{

printf("\fIrDA test\n\n1 = Procomm DOS\n2 = Procomm Windows");
resetkey();

if(kbhit())
{

if(getchar()==UP_KEY)
IrDA_procomm_example(DOS);

else if(getchar()==DOWN_KEY)
IrDA_procomm_example(WINDOWS);

}
}

}

Appendix 3: Trouble-shooting (Questions and Answers)

Q1: My IrDA printer prints unwanted characters after the initialisation of the connection
Q2: The communication fails directly after the initialisation of the connection
Q3: The OPL972x crashes directly after or during the initialisation of the connection

A1..3: Some IrDA devices don't accept certain additional commands during the initialisation of the IrDA
connection. These commands can then be misinterpreted and can cause the IrDA device to misinterpret these
commands as data or to respond in an unexpected way. If any of the 3 problems listed above occur, then try
adding the following line at the start of the main() function of your application:

IrDA_SetFlowControl(OFF); // Disable FlowContol initialization of IrDA lite stack

Q4: I can't compile/build my software after I added IrDA functions to my software

A4:
Make sure you've verified all the following steps:

- Check if you added the IrDA library to link-command in the link-file:
Example: tulink startup.rel LOAV0104.LIB testprog.rel etc.

- Check if you included the file: 'irda_lib.h' in all the source files that make use of the IrDA library
- Check if you have OS version LBxV0212 (or higher) on your OPL972x

Q5: Making an IrDA connection always fails:

A5:
- Check if your IrDA device supports the IrCOMM or IRLPT protocol
- Check if the IrDA sensor of the remote device is in line of sight of the IrDA sensor of the OPL972x
- Check if IrDA is enabled on your remote IrDA device
- The IrDA lite library (normally) can't be used to set up a between an OPL972x terminal and the infrared port of

a laptop, PC or another OPL972x terminal.

Q6: The IrDA communication is extremely slow

A6:
- If you use the function 'put_comF' a lot in your software, realise that each character that’s being send using this

function will be wrapped in a separate IrDA data packet of about 60 bytes. Sending more characters after one
each other using this function will therefor result in a very slow connection speed and the IrDA comport buffer
will be full very quick. If you need to send more data always of the function: 'transmit_string_ir()'

