
 TCP-IP Library
for the OPH100x and H13

Application Development Manual
Library version:

XMAV0306 / XPAV0306
2008, Opticon Sensors Europe BV

TCP/IP Library for the OPH100x and H13 Opticon Sensors Europe BV

Table of Contents

1. Introduction..3
1.1. This manual..4

2. Using the TCP/IP Library for the OPH100x and H13...5
2.1. Selection and setup of the modem..5
2.2. Connecting the modem...5
2.3. Making a GSM / GPRS connection with a mobile phone..5
2.4. Making an Ethernet connection with the Opticon Ethernet box...5
2.5. How to include the library in your application software...6
2.6. Parameters used by the library functions..6
2.7. Calling the library functions...8

3. TCP/IP Library Functions..9
3.1. TCPIP_init...9
3.2. connect...10
3.3. connect_additional_ATcommand..11
3.4. connect_user_specified_ATcommand..11
3.5. register_manual_connection...12
3.6. disconnect...13
3.7. ftp_command..14
3.8. ftp_connected...18
3.9. getmail..19
3.10. sendmail...23
3.11. sendmail_authenticated..24
3.12. get_host_by_name...26
3.13. get_host_by_addr...26
3.14. get_local_IP_address...28
3.15. get_ISP_server_IP..28
3.16. get_primary_DNS_server_IP..29
3.17. get_secondary_DNS_server_IP..29
3.18. set_primary_DNS_server_IP / set_secondary_DNS_server_IP...31
3.19. get_NTP_time...32
3.20. change_FTP_remote_port_nr...34
3.21. change_SMTP_remote_port_nr..34
3.22. change_POP_remote_port_nr...34
3.23. tcpip_lib_version
...35

 APPENDIX A: Error codes...36
 APPENDIX B: Serial connection from terminal to modem..37
 APPENDIX C: AT-command diagram of the connect-functions...38
 APPENDIX D: Making a GPRS connection with a mobile phone...39
 APPENDIX E: Manually establish a TCP/IP connection...41
 APPENDIX F: Test Results..45
 APPENDIX G: NTP Time servers...46

- 2 -

1. Introduction
The TCP/IP Library for Opticons Handheld Terminals OPH100x and H13 provide the possibility to
exchange data over the Internet.

Salient features:
• Dial-in using an Analog modem and GSM or GPRS modem/telephone
• Connect to an Ethernet netwerk (with or without Internet access like DSL) using the Opticon

Ethernet converter box.
• A standard PPP dial-up account can be used to access the Internet.
• The FTP protocol is supported for file transfer (both active and passive FTP is supported).
• The POP and SMTP protocols are supported to receive and send email.
• The DNS protocol is supported to get the IP-addresses of domain names and vice versa.
• The IPCP protocol is supported to get your local IP address and the IP addresses op the ISP

server and the (primary and secondary) DNS servers. (The IP addresses of the DNS servers can
also be set manually in case the ISP server didn’t provide the IP addresses of the primary and
secondary DNS server.)

• The NTP protocol is supported to get the current time from a NTP time-server.

This manual describes the use of the TCP/IP library for the OPH100x and H13 in a C language
application for the following data collection terminals:

Library versions: XMAV0306 (OPH-1003) and XPAV0306 (OPH-1004 & H13)

1.1.This manual
This manual assumes that the reader has sufficient understanding of application programming in the
C language (ANSI C), and of common Internet terminology.
It describes how to use the functions of the TCP/IP Library for the OPH100x and H13 in application
software. It does not describe in general how to develop applications for Opticons barcode terminals.
For this, we refer to the Opticon Programming manual that is included in Opticons “C-development kit
for handheld barcode terminals”.

The TCP/IP Library for the OPH100x and H13 is copyrighted 2008 Opticon Sensors Europe BV. It
is partly based on the uIP TCP/IP protocol stack developed by Adam Dunkels. The appropriate
copyright notice is shown below (note: the inclusion in this library is considered to be redistribution in
binary form).

Copyright (c) 2001, Adam Dunkels.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.
3. All advertising materials mentioning features or use of this
 software must display the following acknowledgement:
 This product includes software developed by Adam Dunkels.
4. The name of the author may not be used to endorse or promote
 products derived from this software without specific prior
 written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2. Using the TCP/IP Library for the OPH100x and H13
This chapter gives general information on the use of the library in your application.

2.1.Selection and setup of the modem
Please observe the following:

• Due to the use of infrared communication between the cradle and the terminal, only half-duplex
operation is permitted. Some modems implement the 'echo' command in such a way that a
command is echoed back before it is completely received. Even though the TCP/IP Library
automatically disables the echo responses of most modems it’s possible that the modem will still
echo back. In this case the modem must be configured in the application so that it doesn’t echo
commands (consult its manual for instructions how to do this).

• The cradles of the OPH100x and H13 do not support hardware handshaking. Configure the
modem so that it doesn’t use hardware handshaking.

• Always use the fastest baud rate possible. Normally that’s 115200bps. This increases the
connection speed and the reliability of the data connection.

2.2.Connecting the modem
The RS232 connector on the cradles of the OPH100x and H13 is a 9-pin, female, sub D connector
wired as a DTE (Data Terminal Equipment) device. The RS232 connector on standard modems is
wired as a DCE (Data Communication Equipment) device. For a DTE-DCE connection, you should
simply connect the pins having the same signal names to each other (appendix B describes the pin
assignment of the connectors).

Some combinations of commonly available cables and adapters are suggested below. You can
alternatively use a cable that is equivalently wired.

• To connect a modem that has a 9-pin female (9F) RS232 connector, you can use a straight (one-
to-one connected) RS232 cable with 9-pin male (9M) connectors at both ends.

• If the modem has only a 25F connector, you can use the above combinations in combination with
a 9F-to-25M adapter.

2.3.Making a GSM / GPRS connection with a mobile phone

A wireless connection with a mobile phone normally uses the standard GSM network of the mobile
phone to dial an ISP server (using a telephone number and an Internet account). Many new types of
mobile phones can also have a GPRS subscription for faster mobile Internet. With this TCP/IP library
it’s now also possible to use these GPRS capabilities of mobile phones to make a faster wireless
Internet connection.

How this can be done is described in detail in Appendix D.

2.4.Making an Ethernet connection with the Opticon Ethernet box

The Opticon Ethernet box allows you to connect an Opticon terminal to the Ethernet/LAN and has
been designed to simulate the behavior of any modem and ISP server. Because of this, applications
that work with a modem will also work with the Opticon Ethernet box without having to change the
application software.

2.5.How to include the library in your application software

To build an application, see the Opticon programming manual for handheld terminals.

The functions of the TCP/IP library can be linked by adding the library to the linker flags (look for
'LDFLAGS' in your makefile).

For the OPH1003 add -lXMAV0306 to the linker flags to add the library file libXMAV0306.a'

For the OPH1004 and H14 add -lXPAV0306 to the linker flags to add the library file libXPAV0306.a'

Example for the OPH1003:

LDFLAGS = -nostartfiles -nostdlib --entry 0x00000000 -Wl,
 -Map=$(TARGET).map,--cref -T$(SUBMDL).ld

 -L. -loph100x -lXMAV0306 -lc -lm –lgcc

Example for the OPH1004 & H13:

LDFLAGS = -nostartfiles -nostdlib --entry 0x00000000 -Wl,
 -Map=$(TARGET).map,--cref -T$(SUBMDL).ld
 -L. -lXPAV0305 -lc -lm –lgcc

The TCP-IP libraries for these Hand-held Terminals use a header file “internet.h”. This file contains
function prototypes and constant definitions and has to be included in all the C source files that make
of use any functions of the TCP/IP library.

2.6.Parameters used by the library functions

The TCP/IP Library for the OPH100x and H13 provides functions to:
• Dial-in using an Analog modem and GSM or GPRS modem/telephone
• Connect to an Ethernet netwerk (with or without Internet access like DSL) using the Opticon

Ethernet converter box.
• Send and receive files using the FTP protocol (both active and passive FTP are supported)
• Receive email using the POP protocol
• Send email using the SMTP protocol (with and without Authentication)
• Get IP-addresses of domain names and vice versa using the DNS protocol
• Get your local IP address, the IP addresses of the ISP server or the primary and secondary DNS

servers using the IPCP protocol. (The IP addresses of the DNS servers can also be set manually
in case the ISP server didn’t provide the IP addresses of the primary and secondary DNS server.)

• Get the current time of an NTP time-server using the NTP protocol

The parameters used by these functions are contained in the structures of the type:
 isp_config
 ftp_config
 pop_config
 smtp_config
 dns_config
 ntp_config

The values in these structures have to be defined before calling the corresponding functions.

The TCP/IP Library exports a variable called ‘internet_status’, which determines if diagnostic
messages or a progress bar are output to the display of the terminal.
• If this variable is set to 0, no messages will be output
• If this variable is set to 1, messages will be output to the display that indicate the progress of

operations (“connected to ISP”, “file received”, etc.).
• If this variable is set to 2, the same messages will be output to the display to indicate the progress

of operations. Also a progress indicator bar will be displayed during the transferring of files using
POP, SMTP and FTP.

• If this variable is set to 3, only a progress indicator bars will be displayed during the transferring of
files using POP, SMTP and FTP but also during the initialization of the connection (POP_INIT,
FTP_INIT)

The library also exports another variable called ‘debug_status’, which determines if debug
messages are output to the display and stored on the terminal.

• If this variable is set to 0, no debug messages will be output or stored.
• If this variable is set to 1, debug messages will be output to the display
• If this variable is set to 2, messages will be output to the display and log files will be generated
• If this variable is set to 3, a log file will be generated that can be analysed using the program

Ethereal

Be aware that the use of this option can have negative effects on the performance of the application,
especially when setting the variable to 1 or 2. When logging is needed it is recommended to use 3,
which is sufficient in almost all circumstances.

This variable should only be set to a different value then zero, if communication problems occur when
using the TCP/IP library. This option can then be used to locate and solve the problem with or without
the help of a programmer of Opticon Sensors Europe BV.

The file names of the generated log files are defined in the header file internet.h, being:

 PPPLOG: Capture file containing all raw communication data between the handheld
terminal and the ISP server. The log file is compatible with the protocol analyzer
Ethereal / Wireshark (free to download) for an easy evaluation of a whole
communication session.

 UIPLOG: Log file that is mainly intended for Opticon programmers to locate problems in the
IP layer of this library

Both variables: ‘debug_status’ and ‘internet_status’ need to be initialized in your application
before other functions of the TCP/IP library are called.

Initializing these variables can be done in the following two ways:

• Setting the values direct by adding the following lines to your source code:

internet_status = 2; // Show progress messages and a progress bar
debug_status = 0; // Don't show or store any debug messages

• Setting the values indirectly by using the library function: TCPIP_init(), this can be done by added
the following line to you source code. (For more information see chapter 3.1).

TCPIP_init(2, 0); // Show progress messages and a progress bar

2.7.Calling the library functions

For correct operation, regular calls to the functions of the TCP-IP library must be made with only short
intervals in between as long as the dial-up connection is up. For instance, if the application should
wait for the user to press a key, depending on the server there may only be a limited time between
two calls of the TCP-IP library, otherwise the connection can time-out.

3. TCP/IP Library Functions

3.1.TCPIP_init

Description Initializes the library variables ‘internet_status’ and ‘debug_status’. The variable
called ‘internet_status’ determines whether diagnostic messages and/or progress
bars are output to the display of the terminal or not. The variable called
‘debug_status’ determines whether encrypted debug messages are output to the
display of the terminal and if all received and sent data is stored on the terminal. See
also chapter 2.5.

Syntax void TCPIP_init(int internet_status, int debug_status);

Arguments int internet_status 0 No status messages will be output .
1 Messages will be output to the display that indicate

the progress of operations (“connected to ISP”, “file
received”, etc.).

2 Messages will be output to the display that indicate
the progress of operations. Also a progress indicator
bar will be displayed during the transferring of files
using POP, SMTP and FTP.

3 Only progress indicator bars will be displayed during
the transferring of files using POP, SMTP and FTP
and also during the initialisation of the connection
when using the FTP_INIT and POP_INIT commands

int debug_status 0 No debug messages or log file will be output.
1 Encrypted messages will be output to the display.

These messages can be used to determine which
parts of the software are called.

2 Besides displaying encrypted messages the
application will also store all received and sent data
and other information in 2 files on the terminal.

3 A log file will be generated of all received and sent
data that can be analysed using the program
Ethereal / Wireshark. (No debug information is
shown on the display)

Returns The file names of the generated log files are defined in internet.h:
 PPPLOG: Capture file containing all raw communication data between the

handheld terminal and the ISP server. The log file is compatible
with the TCP/IP analysing tool Ethereal for an easy evaluation of a
whole communication session.

 UIPLOG: Log file that is mainly intended for Opticon programmers to locate
problems in the IP layer of this library

Remarks Both variables: ‘debug_status’ and ‘internet_status’ need to be initialized in your
application before other functions of the TCP/IP library are called, the best way to do
this is by calling this function with the desired values. See also chapter 2.5.
If ‘internet_status’ is set to 2 or 3 the progress indicator will only be displayed if
‘debug_status’ is set to 0 or 3.

3.2.connect

Description Uses the modem to dial-up to an Internet Service Provider, and starts a PPP
connection. After a successful completion of this function, the terminal is connected
to the Internet, and the other library functions can be used for using the FTP, SMTP,
POP, DNS and NTP protocol.

Syntax int connect (struct isp_config *isp);

Arguments struct isp_config *isp

struct isp_config{
char phonenumber[20];
char user[40];
char pass[40];
char com;
char abort_key;

};

phonenumber
Null-terminated string containing the phone number of the Internet Service provider.
In normal cases the dialing command of the modem will always start with ATDT, so
the dialing command will be: “ATDT<isp. phonenumber>”.
If, in a rare case, the dialing command shouldn’t start with “ATDT”, this command can
be overruled by specifying the complete dialing command in this variable.
(i.e isp.phonenumber -> “ATD*99***1#”)

user
Null-terminated string containing the user name that corresponds to the ISP account

pass
Null-terminated string that contains the password to authenticate the user to the ISP.

com
Specifies the serial port of the terminal that the modem is connected on:

COM1 Infrared Port
COM2 Cradle

abort_key
Specifies the key that can be used to abort the function.

Returns This function returns an error code (see appendix A)

Remarks If this function returns any other value than DIALUP_SUCCESS (= 0), the PPP
connection was not established.

More information about the modem (AT-)commands that are being send to the
modem or mobile phone when calling this connect()-function, can be found in
Appendix C.

When using the Opticon Ethernet Box, the variables 'phonenumber', 'user' and 'pass'
are irrelevant, because the Ethernet Box will accept all.

3.3.connect_additional_ATcommand

Description See 3.2 connect, the only difference with the connect()-function is that this
function allows the user to specify an additional modem (AT-)command to set up the
modem or mobile phone to the desired configuration.

Syntax int connect_additional_ATcommand(struct isp_config *isp, char *AT_Command)

Arguments struct isp_config *isp, see 3.2 connect.

char * AT_Command
Additional modem (AT-)command string that will be send to the modem or mobile
phone between the sending of the normal modem configuration commands and
dialing command.

Returns This function returns an error code (see appendix A)

Remarks If this function returns any other value than DIALUP_SUCCESS, the PPP connection
was not established.

More information about the modem (AT-)commands that are being send to the
modem or mobile phone when calling this connect_additional_ATcommand()-
function, can be found in Appendix C.

3.4.connect_user_specified_ATcommand

Description See 3.2 connect, the only difference with the connect()-function is that this
function allows the user to specify its own modem (AT-)command to set up the
modem or mobile phone to the desired configuration.

Syntax int connect_user_specified_ATcommand(struct isp_config *isp, char *AT_Command)

Arguments struct isp_config *isp, see 3.2 connect.

char * AT_Command
The modem (AT-)command string that will be send to the modem or mobile phone
between the sending of the modem reset command string (ATZ) and the dialing
command.

Returns This function returns an error code (see appendix A)

Remarks If this function returns any other value than DIALUP_SUCCESS, the PPP connection
was not established.

The modem reset string (ATZ) and the dialing command (i.e. ATDT<phonenumber>)
will always be send and can’t be overruled.

More information about the modem (AT-)commands that are normally send to the
modem or mobile phone when calling the connect()-function or the
connect_additional_ATcommand()-function, can be found in Appendix C. These
commands can be used as reference when choosing the correct AT-command for
this function.

3.5. register_manual_connection

Description This function allows the user to manually connect the OPH100x or H13 to an ISP
server without using the connect()-function of this library. After the connection has
been established it must be registered to the TCP/IP library by using this function.

Syntax int register_manual_connection(struct isp_config *isp)

Arguments struct isp_config *isp

struct isp_config{
char phonenumber[20];
char user[40];
char pass[40];
char com;
char abort_key;

};

phonenumber
<not used by library>

user
Null-terminated string containing the user name that corresponds to the ISP account

pass
Null-terminated string that contains the password to authenticate the user to the ISP.

com
Specifies the serial port of the terminal that the modem is connected on:

COM1 Infrared Port
COM2 Cradle

abort_key
Specifies the key that can be used to abort the function.

Returns This function returns an error code (see appendix A, same as 'connect()')

Remarks If this function returns any other value than DIALUP_SUCCESS (=0), the connection
was not successfully registered.

More information about the modem (AT-)commands that are normally send to the
modem or mobile phone when calling the connect()-function or the
connect_additional_ATcommand()-function, can be found in Appendix C. These
commands can be used as reference when choosing the correct AT-command for
this function.

See Appendix E, for detailed information on how this function can be used.

3.6.disconnect

Description Terminates the PPP connection, hangs up the modem, mobile phone or Ethernet box
and closes the COM port.

Syntax int disconnect (struct isp_config *isp)

Arguments struct isp_config *isp See 3.2. connect()

Returns This function returns an error code (see appendix A)

3.7. ftp_command

Description Function that executes different FTP commands. During an FTP session, files can be
transmitted and received using the File Transfer Protocol. To start an FTP session,
the function ftp_command must be called with its command argument set to
FTP_INIT.
The function executes the specified command and then returns. It can be repeatedly
called until the FTP session is closed (using the FTP_QUIT command).

Syntax int ftp_command (struct ftp_config *ftp, unsigned int command)

Arguments struct ftp_config *ftp
A pointer to a ftp_config structure that contains the necessary parameters.

unsigned int command
Command the specifies the next FTP operation to be executed. The supported
commands are the following:

FTP_INIT Initialize connection with FTP server.
FTP_PUT Upload a file.
FTP_PUT_PASSIVE Upload a file using passive FTP.
FTP_GET Download a file.
FTP_GET_PASSIVE Download a file using passive FTP
FTP_CWD Change working directory.
FTP_LIST Get a directory listing.
FTP_LIST_PASSIVE Get a directory listing using passive FTP
FTP_DEL Delete file on FTP server.
FTP_REN Rename file on FTP server.
FTP_QUIT Disconnect from FTP server.

struct ftp_config{
unsigned short IP1, IP2, IP3, IP4;
char user[40];
char pass[40];
char local_file[13];
char remote_file[40];
unsigned char append;
char abort_key;

};

IP1 … IP4 The 4 bytes specifying the IP address of the FTP-server

user Contains the user name of the FTP server account

pass Contains the password to be used for authentication to the
FTP server.

local_file FTP_PUT_PASSIVE : specifies the file that has to be
uploaded to the FTP server.
FTP_GET_PASSIVE: specifies what the downloaded file
has to be named.
FTP_LIST_PASSIVE: specifies the filename to which the
directory listing is written.
FTP_REN, this specifies the new name for the file.
FTP_INIT, FTP_CWD, FTP_DEL, FTP_QUIT: this para-
meter is ignored.

remote_file FTP_PUT_PASSIVE: specifies the file name of the
uploaded file on the FTP server (if the string is empty, the
FTP server is instructed to select a new, unique file name).
FTP_GET_PASSIVE: specifies the name of the downloaded
file.
FTP_LIST_PASSIVE: specifies a file name mask (e.g. *.txt).
If the string is empty, all files in the directory are listed.
FTP_CWD: specifies the path of the new work directory (this
may also be the parent directory by using '..')
FTP_REN: specifies the file to be renamed.
FTP_DEL: specifies the file to be deleted.
FTP_INIT, FTP_QUIT: this parameter is ignored.

append FTP_GET_PASSIVE: specifies if received data is to be
appended to the specified local file or not.
FTP_PUT_PASSIVE: specifies if the FTP server is to
append the transmitted data to the specified remote file.
(1 = Append, 0 = Overwrite)

abort_key Specifies the key to abort the operation.

Returns This function returns an error code (see appendix A)

Remarks After the ftp_command-function returns, the application can evaluate what next
command to issue. For example, it may examine the file downloaded by an
FTP_LIST command, to determine if a certain file actually exists on the FTP-server
before attempting to download it. However, note that the application should call
ftp_command with only short intervals, until the FTP session has been closed,
otherwise the FTP connection may time-out.

When using FTP_PUT to upload larger files, then the connection speed is likely to
drop significantly after a few seconds. This is caused by the implementation of
'Delayed acknowledgements' on most FTP-servers and the fact that the IP-stack of
the terminal only transmits one data packet at a time. Because the FTP-server will
expect more frames, it will only send an acknowledgement after a certain delay,
causing the connection speed to drop.

Due to the use of Firewalls that filter incoming data port connections from the server
to the terminal it is possible that transferring files using (active) FTP will not work.
For this reason this library supports the use of Passive FTP (PASV) by using the
commands FTP_PUT_PASSIVE, FTP_GET_PASSIVE and FTP_LIST_PASSIVE.
By using passive FTP the terminal opens the data connections instead of the server,
so the firewalls will not block the data.

Example: FTP

#include <stdio.h>
#include <string.h>
#include “lib.h”
#include “internet.h” // header file of the TCP/IP library

struct ftp_config ftp; // Declares structure which contains SMTP configurations
struct isp_config isp; // Declares structure which contains ISP configurations

void main (void)
{

int error, key=0;

setfont(SMALL_FONT, NULL); // small font
systemsetting (“SZ”); // COM speed set to 115200 baud

// 2: Display progress messages and a progress bar
// 0: Turn off the debug status messages
TCPIP_init(2, 0);

// Internet Service Provider Settings
strcpy(isp.phonenumber, "0676075030"); // change this value!
strcpy(isp.user, "oph100x"); // change this value!
strcpy(isp.pass, "test"); // change this value!
isp.com = COM2; // Modem is connected with the cradle
isp.abort_key = CLR_KEY;

// FTP IP-address = 62.58.50.14
ftp.IP1 = 62; ftp.IP2 = 58; ftp.IP3 = 50; ftp.IP4 = 14; // change these values!
strcpy (ftp.user, “user”);
strcpy (ftp.pass, “test”);
ftp.append = FALSE; // prices.txt will be overwritten
ftp.abort_key = CLR_KEY; // The CLR key will be used to abort

while (1)
{

resetkey(); // Clear keyboard buffer
printf(“\fFTP: choose\n”);
printf(“1) Put file\n”);
printf(“2) Get file\n”);
printf(“3) Put&get files\n”);

do {key=getchar;}
while ((key <’1’)||(key>’3’)); // get option

if ((error=connect(&isp))!= DIALUP_SUCCESS) // connect to ISP
{

printf("\nConnect: error #%i", error);
while(!kbhit());
disconnect(&isp);
continue;

}

// connect to FTP server
if ((error=ftp_command(&ftp,FTP_INIT))!= FTP_SUCCESS)
{

printf("\nftp_init: \nerror #%i", error);
while(!kbhit());
disconnect(&isp);
continue;

}

if (key==’1’ || key==’3’) // upload file to FTP
{

strcpy (ftp.local_file,“data.txt”);
strcpy (ftp.remote_file,“barcodes.txt”);

if ((error= ftp_command(&ftp, FTP_PUT))!=FTP_SUCCESS)
{

printf("\nFTP put:\nerror #%i", error);

if(ftp_connected()) // disconnect from FTP server
ftp_command(&ftp,FTP_QUIT);

disconnect(&isp); // disconnect from ISP
while(!kbhit());
continue;

}
}

if (key==’2’ || key==’3’) // Download file from FTP
{

strcpy (ftp.remote_file, “prices.txt”);
strcpy (ftp.local_file, “prices.txt”);
if ((error= ftp_command(&ftp,FTP_GET))!=FTP_SUCCESS)
{

printf("\nFTP get:\nerror #%i", error);

if(ftp_connected()) // disconnect from FTP server
ftp_command(&ftp,FTP_QUIT);

disconnect(&isp); // disconnect from ISP
printf("\nHit a key");
while(!kbhit());
continue;

}
}
// disconnect from FTP server

if(ftp_connected())
{

if ((error= ftp_command(&ftp,FTP_QUIT)) != FTP_SUCCESS)
{

printf("\nFTP quit:\nerror #%i", error);
disconnect(&isp); // disconnect from ISP
printf("\nHit a key");
while(!kbhit());
continue;

}
}
disconnect(&isp); // disconnect from ISP

}
}

3.8. ftp_connected

Description Function for checking the state of the connection with the FTP server

Syntax int ftp_connected(void)

Arguments none

Returns
0 Not connected
1 Connected

3.9.getmail

Description Retrieves email using the Post Office Protocol (POP3)

Syntax int getmail(struct pop_config *pop, int pop_command)

Arguments int pop_command
Specifies the type of command to be executed
POP_INIT : sets up a connection to the POP3 server.
POP_GET : retrieves a specified message

struct pop_config *pop

struct pop_config
{

unsigned short IP1, IP2, IP3, IP4;
unsigned int msg_num;
char local_file[13];
char user[40];
char pass[40];
char nr_of_msgs;
char incl_hdrs;
char delete_msg;
char msg_number;
char abort_key;

}

IP1 .. IP4
The 4 bytes specifying the IP address of the POP server.

nr_of_msgs
After execution of the POP_INIT command, the number of messages on the server
will be written into this variable.

incl_hdrs
To be used when executing the POP_GET command. This variable determines
whether the header of the received message will be added to the file (local_file) or
not. (1 = “add header to file”, 0 = “only add body of message to file”)

delete_msg
To be used when executing the POP_GET command. This variable determines
whether the received message will be deleted from the serverafter the message was
successfully received. (1 = delete message, 0 = leave message on server)

msg_number
Before executing the POP_GET command, this variable has to contain the number of
the message to be downloaded.

local_file
Specifies the file that a retrieved message will be written to.

user
Contains the username to identify the POP account.

pass
Contains the password for authentication to the POP-server.

abort_key
Contains the key that can be used to abort the function.

Returns This function returns an error code (see appendix A)

Remarks This function receives e-mail messages as plain text. Attachments are not decoded.

Example: POP (getmail)

#include <stdio.h>
#include <string.h>
#include “lib.h”
#include “internet.h” // header file of the TCP/IP library

struct pop_config pop; // Declares structure which contains POP configurations
struct isp_config isp; // Declares structure which contains ISP configurations

void main (void)
{

int error=0;

setfont(SMALL_FONT, NULL); // small font
systemsetting (“SZ”); // COM speed set to 115200 baud
resetkey(); // Clears keyboard buffer

// 2: Display progress messages and a progress bar
// 0: Turn off the debug status messages
TCPIP_init(2, 0);

// Internet Service Provider Settings
strcpy(isp.phonenumber, "0676075030"); // change this value!
strcpy(isp.user, "oph100x"); // change this value!
strcpy(isp.pass, "test"); // change this value!
isp.com = COM2; // Modem is connected with the cradle
isp.abort_key = CLR_KEY;

// POP IP-address = 62.58.50.10 // change these values!
pop.IP1 = 62; pop.IP2 = 58; pop.IP3 = 50; pop.IP4 = 10;

strcpy (pop.user, "user123");
strcpy (pop.pass, "test");
strcpy (pop.local_file, "database.txt");

pop.incl_hdrs = FALSE; //don't include header to file
pop.delete_msg = TRUE; //delete message from server after receiving
pop.abort_key = CLR_KEY; // The CLR key will be used to abort

if ((error=connect(&isp)) < 0)
{

switch(error)
{

case ERR_USER_ABORTED:
printf("connection error");
break;

case ERR_POLLED:
printf("ISP not responding");
break;

default:
printf("\nError #%d",error);

}
}
else if ((error=getmail(&pop,POP_INIT)) < 0)
{

switch(error) // Only two errors are evaluated in this example
{

case ERR_USER_ABORTED:
printf("User aborted by pressing key");
break;

case ERR_POLLED:
printf("Application polled too many times");
break;

default:
printf("\nError #%d",error);

}
}

else
{

printf("\n\n%d MESSAGES FOUND",pop.nr_of_msgs);

if(pop.nr_of_msgs!=0)
{

//get last message from server
pop.msg_number = pop.nr_of_msgs;

error = getmail(&pop, POP_GET);
}

if(!error)
{

error=getmail(&pop,POP_QUIT);
}

if(error)
{

switch(error) // Only two errors are evaluated in this example
{

case ERR_USER_ABORTED:
printf("User aborted by pressing key");
break;

case ERR_POLLED:
printf("Application polled too many times");
break;

default:
printf("\nError #%d",error);

}
}

}

disconnect(&isp);

printf("\nHit a key");

while(!kbhit())
idle();

}

3.10.sendmail

Description Sends email using the Simple Mail Transfer Protocol (SMTP).

Syntax int sendmail(struct mail_config *mail)

Arguments struct mail_config *mail

struct mail_config
{

unsigned short IP1, IP2, IP3, IP4;
char sender[40];
char recipient[40];
char subject[40];
char reply[40];
char *smtp_msg.
char local_file;
char attach;
char base64;
char abort_key;

};

IP1.. IP4
The four bytes specifying the IP address of the SMTP Server

sender
Contains the email address of the sender, as will appear in the FROM: header of the
transmitted email.
Note that some SMTP servers will only send the email if the domain of the senders
email address matches the domain of the SMTP server

recipient
Contains the name/email address of the recipient. It will appear in the TO: header of
the transmitted email.

subject
Contains the subject line, as will appear in the SUBJECT: header of the transmitted
email.

reply
Contains the email address as will appear in the REPLY-TO: header of the
transmitted email.

smtp_msg
This pointer to a string specifies an additional message, that is included in the email
when the file is transmitted as an attachment.

local_file
Contains the name of the file that is either send in the message body or that is to be
sent as an attachment.

attach
Flag that specifies whether the local file is to be sent in the message body or as an
attachment to the email.
(1=’send the file as an attachment’; 0=’include the file in the message body’).
If the file is sent as an attachment, it will be transmitted as MIME type application:
octet_stream.

base64
Specifies whether the attachment uses base64 encoding or 7-bit ASCII encoding.
Base64 encoding is appropriate for binary files. Base64 encoding should also be
selected for ASCII text files if they contain single <CR> or <LF> characters rather
than <CR><LF> sequences, or if they contain lines that are longer than 1000
characters.
(1 = “base 64 encoding”; 0 = “7-bit ASCII encoding”)

abort_key
Specifies the key for aborting the operation.

Returns The function returns an error code (see appendix A)

Remarks
 In case the file is transmitted in the body of the email or as a 7-bit ASCII encoded attachment,

any single <CR> or <LF> characters will be expanded to <CR><LF>. In addition, <CR><LF> will
be inserted after every sequence of 1000 characters that does not include <CR>, <LF> or
<CR><LF>. The 8th bit of each character will be set to 0. These modifications are necessary to
conform to the SMTP protocol.

 To be sure that a text or binary file is transferred without any modification, send the file as a
binary attachment (base64 encoded).

 When using an Opticon Ethernet box or a GPRS connection you don't login with a user name
and password to an ISP server. Therefor most SMTP will not allow you to send emails using that
connection, unless you use 'sendmail_authenticated' to authenticate yourself first.

 It is possible that an SMTP server doesn't use the default port 25 for receiving emails,but uses a
different port number. In this case use the function: 'change_SMTP_remote_port_nr'

3.11.sendmail_authenticated

Description Sends email using the Simple Mail Transfer Protocol (SMTP) with (plain)
authentication, so mail servers can be used that aren't linked to the used ISP-server

Syntax int sendmail_authenticated(mail_config *mstruct, unsigned char *username,
unsigned char *password)

Arguments struct mail_config *mail (see 3.10 Sendmail)

username Pointer to SMTP Username
(if NULL, no authentication is performed)

password Pointer to SMTP Password
 (if NULL, no authentication is performed)

Returns The function returns an error code (see appendix A)

Remarks:
 Not every SMTP server will support (PLAIN) authentication or allow connections from other ISP's
 See also the remarks of 3.10 sendmail
 sendmail_authenticated(mstruct, NULL, NULL) is the equivalent of sendmail(mstruct)

Example: SMTP (sendmail)

#include <stdio.h>
#include <string.h>
#include “lib.h”
#include “internet.h” // header file of the TCP/IP library

struct mail_config mail; // Declares structure which contains SMTP configurations
struct isp_config isp; // Declares structure which contains ISP configurations

void main (void){
int error=0;
char* textMessage = "ATTACHMENT INCLUDED";

setfont(SMALL_FONT, NULL); // small font
systemsetting ("SZ"); // COM speed set to 115200 baud

// 2: Display progress messages and a progress bar
// 0: Turn off the debug status messages
TCPIP_init(2, 0);

// Internet Service Provider Settings
strcpy(isp.phonenumber, "0676075030"); // change this value!
strcpy(isp.user, "oph100x"); // change this value!
strcpy(isp.pass, "test"); // change this value!
isp.com = COM2; // Modem is connected with the cradle
isp.abort_key = CLR_KEY;

// SMTP IP-address = 62.58.50.46 //change these values
mail.IP1 = 62; mail.IP2 = 58; mail.IP3 = 50; mail.IP4 = 46;

strcpy(mail.sender,"oph100x@zonnet.nl"); //change this value
strcpy(mail.recipient, "database@opticon.com"); //change this value
strcpy(mail.reply," database@opticon.com"); //change this value

strcpy(mail.subject,"testing OPH100x email");
strcpy(mail.local_file,"database.txt");
mail.smtp_msg = textMessage;
mail.attach = TRUE; // attach as file to email
mail.base64 = TRUE; // use base64 code to send file as binary data
mail.abort_key= CLR_KEY; // The CLR key will be used to abort

if ((error=connect(&isp)) < 0)
{

switch(error){
case ERR_USER_ABORTED:

printf("\nerror opening COM port");
break;

default:
printf("\nError #%d",error);

}
}
else if ((error=sendmail(&mail) < 0))
{

switch(error) // This example only handles 3 errors
{

case ERR_USER_ABORTED:
printf("User aborted by pressing key");
break;

case ERR_NO_SUCH_FILE:
printf("File does not exist");
break;

case ERR_POLLED:
printf("Application polled too many times");
break;

default:
printf("\nOther Error");

}
}
disconnect(&isp);
while(!kbhit())

idle();
}

3.12.get_host_by_name

Description Returns the IP address of the specified domain name using the Domain Name
System (DNS) protocol.

Syntax int get_host_by_name(struct dns_config *dns)

Arguments struct dns_config *dns

struct dns_config{
char domain_address[80];
unsigned short IP1, IP2, IP3, IP4;
char abort_key;

};

domain_address
Contains the domain name of which the IP address should be retrieved

IP1.. IP4
The four bytes in which the IP address of the specified domain name is returned

abort_key
Specifies the key for aborting the operation.

Returns The function returns an error code (see appendix A)

Remarks If the function returns the error: -37 (ERR_DNS_NO_SERVERS_FOUND), use the
functions: set_primary(/secondary)_DNS_server_IP to set the IP addresses of the
DNS servers manually. (Note that most DNS servers will only respond to their own
ISP server)

3.13.get_host_by_addr

Description Returns the domain name of the specified IP address using the Domain Name
System (DNS) protocol.

Syntax int get_host_by_addr(struct dns_config *dns)

Arguments struct dns_config *dns
struct dns_config {

char domain_address[80];
unsigned short IP1, IP2, IP3, IP4;
char abort_key;

};

domain_address
String in which the domain name of specified IP address is returned

IP1.. IP4
Contain the IP address of the domain name that should be retrieved.

abort_key
Specifies the key for aborting the operation.

Returns The function returns an error code (see appendix A)

Remarks See 3.12 get_host_by_name

Example: DNS (get_host_by_name/address)

#include <stdio.h>
#include <string.h>
#include “lib.h”
#include “internet.h” // header file of the TCP/IP library

struct dns_config dns; // Declares structure which contains DNS configurations
struct isp_config isp; // Declares structure which contains ISP configurations

void main (void)
{

int error=0;

setfont(SMALL_FONT, NULL); // small font
systemsetting ("SZ"); // COM speed set to 115200 baud
resetkey(); // Clears keyboard buffer

// 2: Display progress messages and a progress bar
// 0: Turn off the debug status messages
TCPIP_init(2, 0);

// Internet Service Provider Settings
strcpy(isp.phonenumber, "0676075030"); // change this value!
strcpy(isp.user, "oph100x"); // change this value!
strcpy(isp.pass, "test"); // change this value!
isp.com = COM2; // Modem is connected with the cradle
isp.abort_key = CLR_KEY;

dns.abort_key = CLR_KEY; //The CLR key will be used to abort

strcpy (dns.domain_address,"ftp.aol.com"); // change this value!

if (error=connect(&isp))
{

switch(error)
{

case ERR_USER_ABORTED:
printf("\nerror opening COM port");
break;

case ERR_NORESPONSE:
printf("\nmodem not connected or not responding");
break;

default:
printf("\nError #%d",error);

}
}
else if ((error=get_host_by_name(&dns))< 0) // Retreive IP-address from DNS-server
{

printf("error %d occurred", error);
}
else
{

printf("\fDomain name:\n%s\n IP ->\n%03d.%03d.%03d.%03d",
 dns.domain_address, dns.IP1, dns.IP2, dns.IP3, dns.IP4);

// IP-address = 205.188.212.118 //change these values
dns.IP1 = 205; dns.IP2 = 188; dns.IP3 = 212; dns.IP4 = 118;

// Retreive domain name from DNS-server
if ((error=get_host_by_addr(&dns)) < 0)

printf("error %d occurred", error);
else
{

printf("\fIP-address:\n%03d.%03d.%03d.%03d\nDomain name:\n%s\n",
dns.IP1, dns.IP2, dns.IP3, dns.IP4, dns.domain_address);

}
}
disconnect(&isp);

while(!kbhit())
idle();

}

3.14.get_local_IP_address

Description Returns the local IP address that is retrieved from the ISP server using the IPCP
protocol.

Syntax int get_local_ip_address(struct dns_config *dns, int timeout)

Arguments struct dns_config *dns

struct dns_config
{

char domain_address[80];
unsigned short IP1, IP2, IP3, IP4;
char abort_key;

};

IP1.. IP4
The four bytes in which the local IP address is returned

abort_key
Specifies the key for aborting the operation.

timeout
Time out in seconds

Returns This function returns an error code (see appendix A)

3.15.get_ISP_server_IP

Description Returns the IP address of the ISP server that is retrieved using the IPCP protocol.

Syntax int get_ISP_server_IP(struct dns_config *dns, int timeout)

Arguments struct dns_config *dns

struct dns_config
{

char domain_address[80];
unsigned short IP1, IP2, IP3, IP4;
char abort_key;

};

IP1.. IP4
The four bytes in which the IP address of the ISP server is returned

abort_key
Specifies the key for aborting the operation.

timeout
Time out in seconds

Returns This function returns an error code (see appendix A)

3.16.get_primary_DNS_server_IP

Description Returns the IP address of the primary DNS server that is retrieved from the ISP

Syntax int get_primary_DNS_server_IP(struct dns_config *dns, int timeout)

Arguments struct dns_config *dns

struct dns_config{
char domain_address[80];
unsigned short IP1, IP2, IP3, IP4;
char abort_key;

};

IP1.. IP4 The four bytes in which the IP address of the primary DNS server is
returned

abort_key Specifies the key for aborting the operation.

timeout Time out in seconds

Returns This function returns an error code (see appendix A)

Remarks If the function returns the error: -37 (ERR_DNS_NO_SERVERS_FOUND), use the
functions: set_primary_DNS_server_IP to set the IP address of the DNS server
manually. (Note that most DNS servers will only respond to their own ISP server)

3.17.get_secondary_DNS_server_IP

Description Returns the IP address of the secondary DNS server that is retrieved from the ISP

Syntax int get_secondary_DNS_server_IP(struct dns_config *dns, int timeout)

Arguments struct dns_config *dns

struct dns_config{
char domain_address[80];
unsigned short IP1, IP2, IP3, IP4;
char abort_key;

};

IP1.. IP4 The four bytes in which the IP address of the secondary DNS server
is returned

abort_key Specifies the key for aborting the operation.

timeout Time out in seconds

Returns This function returns an error code (see appendix A)

Remarks If the function returns the error: -37 (ERR_DNS_NO_SERVERS_FOUND), use the
functions: set_secondary_DNS_server_IP to set the IP address of the DNS server
manually. (Note that most DNS servers will only respond to their own ISP server)

Example: get IP addresses

#include <stdio.h>
#include <string.h>
#include “lib.h”
#include “internet.h” // header file of the TCP/IP library

struct isp_config isp; // Declares structure which contains ISP configurations
struct dns_config dns; // Declares structure which contains DNS configurations

void main (void){
int error=0;
int dns_choice;

setfont(SMALL_FONT, NULL); // small font
systemsetting ("SZ"); // COM speed set to 115200 baud
resetkey(); // Clears keyboard buffer

// 2: Display progress messages and a progress bar
// 0: Turn off the debug status messages
TCPIP_init(2, 0);

// Internet Service Provider Settings
strcpy(isp.phonenumber, "0676075030"); // change this value!
strcpy(isp.user, "oph100x"); // change this value!
strcpy(isp.pass, "test"); // change this value!
isp.com = COM2; // Modem is connected with the cradle
dns.abort_key = CLR_KEY; //The CLR key will be used to abort

dns_choice = 1; //1: local IP, 2: ISP IP, 3: Prim. DNS, 4: Secnd. DNS

printf("Starting...");

if ((error=connect(&isp)) < 0)
{

switch(error) {
case -1:

printf("\nerror opening COM port");
break;

case -2:
printf("\nmodem not connected or not responding");
break;

case -3:
printf("\nISP not responding");
break;

}
}
else {

switch(dns_choice) {
case 1:

error = get_local_IP_address(&dns, 30); // 30 sec time out
break;

case 2:
error=get_ISP_server_IP(&dns, 30);
break;

case 3:
error=get_primary_DNS_server_IP(&dns, 30);
break;

case 4:
error=get_secondary_DNS_server_IP(&dns, 30);
break;

}

if(!error) {
 printf("\nRequested IP:\n%03d.%03d.%03d.%03d\n",

dns.IP1, dns.IP2, dns.IP3, dns.IP4);
}
else

printf("error %d occurred", error);
}
disconnect(&isp);
while(!kbhit())

idle();
}

3.18.set_primary_DNS_server_IP / set_secondary_DNS_server_IP

Description Sets the IP addresses of respectively the primary and secondary DNS server.

Syntax void set_primary_DNS_server_IP(struct dns_config *dns)
void set_secondary_DNS_server_IP(struct dns_config *dns)

Arguments struct dns_config *dns

struct dns_config
{

char domain_address[80];
unsigned short IP1, IP2, IP3, IP4;
char abort_key;

};

IP1.. IP4
The 4 bytes in which the IP addresses of the primary or secondary DNS server
should be set.

abort_key and domain_address
Aren’t used in this function

Returns None

Remarks Use this function only if the functions get_primary(/secondary)_DNS_server_IP return
the error: -37 (ERR_DNS_NO_SERVERS_FOUND). This indicates the ISP server
didn’t provide any IP addresses of DNS servers during the IPCP negotiation.

If the ISP server does provide any IP addresses of DNS servers, the IP addresses
that are set using this function will be overwritten during the IPCP negotiation.

Note that most DNS servers will only respond to their own ISP server, so only specify
DNS servers that work with the chosen ISP server.

3.19.get_NTP_time

Description Returns the current time from an NTP server using the Network Time Protocol (NTP)

Syntax int get_NTP_time(struct ntp_config *ntp, int time_zone)

Arguments struct ntp_config
{

unsigned short IP1, IP2, IP3, IP4;
struct date *date;
struct time *time;
u8_t abort_key;

};

IP1.. IP4
The four bytes specifying the IP address of the NTP Server

date and time
Date and time structure as can be found in the file ‘lib.h’., see below:

struct date {
unsigned int da_year;
unsigned char da_day, da_mon;

}

struct time {
unsigned char ti_hour, ti_min, ti_sec;

}

Before calling the get_NTP_function the structures ‘date’ and ‘time’ should be
configured with the current local time and date of the terminal. (Off course, this local
time and date doesn’t have to be the correct time)

After the get_NTP_function is succesfully called these time and date structures will
contain the returned local time from the NTP server.

abort_key
Specifies the key for aborting the operation.

time_zone
Local time zone in comparison with Greenwich Mean Time (GMT), also called
Universal Coordinated Time (UTC).
i.e. Central European Time CET is +1 (or +2 at summer time)

Returns The function returns an error code (see appendix A)

Remarks It is strongly recommended to use DNS to get the IP addresses from the NTP servers
(by using the function get_host_by_name), because the IP addresses of NTP servers
will often change from time to time.

In Appendix G a list of almost 200 tested NTP servers can be found. (Note that this
list will start to contain many non functioning servers in the near future.)

Example: NTP (get_NTP_time)

#include <stdio.h>
#include <string.h>
#include “lib.h”
#include “internet.h” // header file of the TCP/IP library

struct ntp_config ntp; // Declares structure which contains NTP configurations
struct isp_config isp; // Declares structure which contains ISP configurations
struct date d;
struct time t;

void main (void)
{

int error=0;

setfont(SMALL_FONT, NULL); // small font
systemsetting ("SZ"); // COM speed set to 115200 baud
resetkey(); // Clears keyboard buffer

// 2: Display progress messages and a progress bar
// 0: Turn off the debug status messages
TCPIP_init(2, 0);

// Internet Service Provider Settings
strcpy(isp.phonenumber, "0676075030"); // change this value!
strcpy(isp.user, "oph100x"); // change this value!
strcpy(isp.pass, "test"); // change this value!
isp.com = COM2; // Modem is connected with the cradle
ntp.abort_key = CLR_KEY; //The CLR key will be used to abort

ntp.IP1 = 83; // IP from nl.pool.ntp.org (83.83.82.105)
ntp.IP2 = 83; // IP-addresses can be changed without prior notice
ntp.IP3 = 82; // for this reason always use DNS (getHostbyName) to
ntp.IP4 = 105; // retrieve the IP-addresses of the used NTP servers

if ((error=connect(&isp)) < 0)
printf("\fError occurred:%d",error);

else
{

TCPIP_init(0, 0);
printf("\f\n Please wait ");

while(1)
{

gettime(&t); //get current local time
getdate(&d); //get current date

ntp.date = &d; //set date and time parameters
ntp.time = &t;

if((error=get_NTP_time(&ntp, +2)) < 0) // get time from NTP
{

printf("\fError occurred:%d",error);
break;

}
else
{

gotoxy(0,1);
printf(" %02d:%02d:%02d ", t.ti_hour, t.ti_min, t.ti_sec);
gotoxy(0,2);
printf(" %02d-%02d-%04d", d.da_day, d.da_mon, d.da_year);

setdate(&d);
settime(&t);

}
}

}
disconnect(&isp); //hang up

while(!kbhit())
idle();

}

3.20.change_FTP_remote_port_nr

Description Changes the port number of the remote FTP server to the specified port number

Syntax int change_FTP_remote_port_nr(unsigned short port_nr)

Arguments unsigned short port_nr
Specifies the port number of the remote FTP server.
Port numbers 25(SMTP), 53(DNS), 110(POP), 123(NTP) are reserved port numbers
and may therefor not be used.

Returns OK On success
ERR_INVALID_PORT_NUMBER If invalid port number is specified

Remarks This function should only be used if the remote FTP server does not operate on port
21. If the port number needs to be changed, call this function after establishing a
connection and before using the ‘ftp_command’ function. The FTP port number is
reset to default (port 21) when the ‘connect’ function is called.

3.21.change_SMTP_remote_port_nr

Description Changes the port number of the remote SMTP server to the specified port number

Syntax int change_SMTP_remote_port_nr(unsigned short port_nr)

Arguments unsigned short port_nr
Specifies the port number of the remote SMTP server.
Port numbers 21(FTP), 53(DNS), 110(POP), 123(NTP) are reserved port numbers
and may therefor not be used.

Returns See 3.20 ‘change_FTP_remote_port_nr‘

Remarks This function should only be used if the remote SMTP server does not operate on
port 25. If the port number needs to be changed, call this function after establishing a
connection and before using the ‘sendmail’ function. The SMTP port number is reset
to default (port 25) when the ‘connect’ function is called.

3.22. change_POP_remote_port_nr

Description Changes the port number of the remote POP server, to the specified port number

Syntax int change_POP_remote_port_nr(unsigned short port_nr)

Arguments unsigned short port_nr
Specifies the port number of the remote POP server.
Port numbers 21(FTP), 53(DNS), 25(SMTP), 123(NTP) are reserved port numbers
and may therefor not be used.

Returns See 3.20 ‘change_FTP_remote_port_nr‘

Remarks This function should only be used if the remote POP server does not operate on port
110. If the port number needs to be changed, call this function after establishing a
connection and before using the ‘getmail’ function. The POP port number is reset to
default (port 110) when the ‘connect’ function is called.

3.23.tcpip_lib_version

Description Returns a pointer to the version string of the TCP/IP library.

Syntax char *tcpip_lib_version(void)

Arguments -

Returns Returns a pointer to the version string of the TCP/IP library, i.e. XMAV0306 or
XPAV0306

Remarks It's recommended that an application includes the possibility to display this version
string for diagnostic purposes.

Example: Library version

#include “lib.h”
#include “internet.h”
#include <stdio.h>

void main(void)
{

printf(“\fLib. version:\n\n %s”, tcpip_lib_version());
while(!kbhit())

idle();
}

APPENDIX A: Error codes
Can occur with function* Name Description
C D F G S DNS IP NTP
* DIALUP_SUCCESS (No error): PPP connection established.

* DISCONNECTED (No Error): PPP connection terminated, modem hung up
* FTP_DONE (No Error): FTP command was successfully executed

* EMAIL_RETRIEVED (No Error): Email was successfully retrieved
* EMAIL_SENT (No Error): Email was successfully sent

* DNS_OK (No Error): DNS information was succesfully retreived
* IP_OK (No Error): IP address information was succesfully retreived

* NTP_OK (No Error): Time was succesfully retreived from NTP server
* * * * * * * * ERR_USER_ABORTED User aborted the operation using the specified key
* ERR_NODIALTONE No dial tone
* ERR_BUSY Telephone line busy
* ERR_NOANSWER Remote system did not pick up the phone
* ERR_NOCARRIER No carrier detected
* * ERR_MODEM The modem has encountered an general error
* ERR_DELAYED Modem currently not allowed to dial
* ERR_BLACKLISTED Number is on modem’s blacklist: not allowed to dial
* * ERR_NORESPONSE No response from modem
* * * * * ERR_BUFFER A serial interface buffer overrun occurred.
* ERR_DIALUP_COM_PORT Could not open the specified COM port

* ERR_CLOSING_COM_PORT An error occurred while closing COM port
* ERR_OFF_HOOK No modem OK reply to the ATH0(off hook) command

* ERR_LOGIN_FAIL Failed to login with ISP
* * * * * * ERR_POLLED TCP connection timeout
* * * ERR_ILLEGAL_COMMAND protocol command not accepted by the server
* * * ERR_SERVER_REJECTED TCP acknowledgement packet rejected by server
* * * ERR_CONNECTION_ABORTED TCP connection reset by peer
* * * ERR_TCP_RECEIVED_RESET TCP connection reset by peer
* ERR_FTP_NO_CONNECTION Not connected to FTP server (FTP_INIT command!)
* ERR_FTP_TEMP_ERROR FTP server temporary error (try again later)
* ERR_FTP_NOT_LOGGED_IN The user is not logged in on the FTP server
* ERR_FTP_SERVER_DOWN No response from FTP server
* ERR_FTP_SYNTAX Incorrect FTP protocol command syntax
* ERR_FTP_NO_ACCOUNT Invalid FTP account specified
* * * ERR_NO_SUCH_FILE Specified file does not exist

* ERR_POP_USER_REJECTED Invalid POP3 account specified
* ERR_POP_PASS_REJECTED POP3 password not accepted
* ERR_POP_SERVER_DOWN No response from POP server

* ERR_SMTP_SENDER_REJECTED SMTP server rejected “sender” value
* ERR_SMTP_RECIPIENT_REJECTED SMTP server rejected “recipient” value
* ERR_SMTP_DATA_REJECTED SMTP server rejected data
* ERR_SMTP_SERVER_DOWN No response from SMTP server
* ERR_SMTP_AUTH_FAILED SMTP server rejected username/pass or doesn't support auth.

* ERR_DNS_NO_RESPONSE DNS servers didn't respond
* ERR_DNS_DATA_INVALID The response of the DNS servers wasn't in the correct format
* ERR_DNS_NO_SERVERS_FOUND The ISP-server didn't give the IP-addresses of a DNS servers
* ERR_DNS_NAME_ERROR The DNS servers don't know the given IP or domain address

* ERR_NTP_NO_RESPONSE NTP server didn't respond
* ERR_NTP_DATA_INVALID The response of the NTP server wasn't in the correct format

*
Code Function(s)

C
D
F
G
S

DNS
IP

Connect()
Disconnect()
ftp_command()
getmain()
sendmail() / sendmail_authenticated()
get_host_by_name(), get_host_by_addr()
get_local_IP_address(), get_(ISP/primaryDNS/secondaryDNS)_server_IP()

The header file “internet.h”, that is used by the TCP-IP library, contains all the definitions of error codes
that are listed above.

APPENDIX B: Serial connection from terminal to
modem

9 pin sub-D female connector

This table describes the connection of the pins on the CRD1001 cradle and commonly available
modems that have a 9-pin sub-D RS232 connector.

The OPH100x and H13 cradle should be connected to the modem via a one-to-one connected cable.

pin # signal
name

DTE
(OPH / H13 cradle)

Description

1 [CD] Carrier Detect
2 [RxD] in Receive Data
3 [TxD] out Transmit Data
4 [DTR] Data Terminal

Ready
5 [GND] gnd Signal Ground
6 [DSR] Data Set Ready
7 [RTS] out Request To Send
8 [CTS] in Clear To Send
9 [RI] Ring Indicator

Sub-D 25 pin female connector

This table describes the connection of the pins on a 25 pin sub-D connector as found on commonly
available modems.

pin # signal
name

DCE
 (Modem)

Description

1 [shield] Shield ground
2 [TxD] in Transmit Data
3 [RxD] out Receive Data
4 [RTS] in Request To Send
5 [CTS] out Clear To Send
6 [DSR] Data Set Ready
7 [GND] gnd Signal Ground
8 [CD] Carrier Detect

20 [DTR] Data Terminal
Ready

22 [RI] Ring Indicator
Note: 9 – 19 / 21 / 23 – 25 are not used

APPENDIX C: AT-command diagram of the
connect-functions

The diagram below shows which modem commands are sent to the modem of mobile phone when
calling the connect()-function or the connect_additional_Atcommand()-function *.

Since the OPH100x and H13 only support 2 comports that are both infrared ports, the same AT
command is sent in both cases:

COM1 IrDA
COM2 Cradle (=also IrDA)

(1) The standard configuration commands (1) won’t be sent when using the
connect_user_specified_ATcommand()-function.

(2) The positions of the lines of dots (…..) in the diagram above, show the place where the additional
AT-commands will be sent when using the connect_additional_ATcommand()-function or the
connect_user_specified_ATcommand()-function.

(3) In normal cases the dialing command will always start with ATDT, so the dialing command will be:
“ATDT<isp. phonenumber>”, if in a rare case the dialing command shouldn’t start with ATDT, this
command can be overruled by specifying the complete dialing command in the variable:

isp. phonenumber

(i.e use: isp.phonenumber -> “ATD*99***1#” when choosing for a GPRS connection, see Appendix D)

ATZ
ATE0M1&K&D0\N3W1 (1)

….. (2)

ATDT<tel> (3)

APPENDIX D: Making a GPRS connection with a
mobile phone.

With this TCP/IP library it’s also possible to use the GPRS capabilities of mobile phones or modems
with GPRS subscription.

The advantage of using the GPRS network of a mobile phone/modem is that establishing a GPRS
connection will be much faster than establishing a connection with an ISP server using the GSM
network.

Note: Before trying to make a wireless GPRS connection first make sure that the mobile
phone / modem that’s being used has a working GPRS subscription.

Making a GPRS connection can’t be done by using the standard connect()-function of this TCP/IP
library. Instead the function: connect_additional_ATcommand() should be used, because an
additional modem (AT-)commands needs to be send to the mobile phone. This is the following AT-
command:

AT+CGDCONT=1,”IP”,”INTERNET” (some GPRS providers may demand a specified IP-address
or domain name at the places: “IP” and “INTERNET”. If this
is the case, contact your provider or the Internet for more
information.)

To make a GPRS connection one of the following commands should be used as ISP phone number:

ATD*99# or ATD*99***1#

Which of these commands should be used depends on the provider or modem you’re using.
The table below shows, which AT-commands should be used to establish a GPRS connection on with
different types of mobile phones. (Note that GPRS hasn’t been tested on most types of the mobile
phones that are listed below, see Appendix F)

Sony-Ericsson T68i

AT+CGDCONT=1, ”IP”,”INTERNET”
(AT+CGQREQ=1,0,0,0,0,0)*
ATD*99***1#

Motorola TP260

(ATQ0V1E1S0=0&C1&D2)*
AT+CGDCONT=1, ”IP”,”INTERNET”
ATDT*99***1#

Ericsson T65, T68, R520m

AT+CGDCONT=1,”IP”,”INTERNET”
ATD*99***1#

Motorola P280

(AT&FE1Q0)
AT+CGDCONT=1, ”IP”,”INTERNET”
(AT+CGQMIN=1,0,0,3,0,0 OK)*
(AT+CGQREQ=1,0,0,3,0,0 OK)*
ATD*99#

Motorola Timeport 280

(AT&F&K5)*
AT+CGDCONT=1,”IP”,”INTERNET”
ATD*99#

Nokia 6310

(AT&F&K4)*
AT+CGDCONT=1,”IP”,”INTERNET”
ATD*99# or ATD*99***1#

Siemens (S45):

(AT&F)*
AT+CGDCONT=1,”IP”,”INTERNET”
ATD*99***1#

Nokia 7650, 8910

AT+CGDCONT=1,”IP”,”INTERNET”
ATD*99***1#

* The modem commands in the table above that are place between brackets may possibly be left out.

The following example demonstrates how a GPRS connection can be made:

#include <stdio.h>
#include <string.h>
#include "lib.h" // Declares some functions and addresses of the terminal
#include "internet.h" // This is the header file of the TCP/IP library

struct isp_config isp;
struct dns_config dns;

void main(void)
{

int error;
systemsetting("K8"); //set baudrate to 38400bps

strcpy (isp.phonenumber, "ATD*99***1#");
strcpy (isp.user ,""); //most providers do not demand the use of an ISP user
strcpy (isp.pass, ""); //name of password, but this depends on the provider.

isp.com = 1; // use IrDA (or cradle)
isp.abort_key = dns.abort_key = CLR_KEY;

// 2: Display progress messages and a progress bar
// 0: Turn off the debug status messages
TCPIP_init(2, 0);

setfont(SMALL_FONT, NULL);

error=connect_additional_ATcommand(&isp,(char *)("AT+CGDCONT=1,\"IP\",\"INTERNET\""));

if (error < 0)
printf(“\fError: %d”,error);

else if((error = get_local_IP_address(&dns, 30)) < 0)
printf(“\fError: %d”,error);

else
{

printf(“\fGPRS connect: OK”);
printf(“\n\nAssigned IP: \n %d.%d.%d.%d”, dns.IP1, dns.IP2, dns.IP3, dns.IP4);

}

disconnect(&isp);

while(!kbhit())
idle();

}

Note: If the function connect_additional_ATcommand is not sufficient to establish a GPRS
connection using a GRPS modem (i.e. because a PIN-code must be negotiated) you must send the
required AT-commands yourself without using any library functions and use the function:
'register_manual_connection' as soon your connected to the ISP.

Sending email to a remote SMTP server using GPRS (also applies to the Ethernet box!)

After establishing the GPRS connection it might happen that it’s not possible to connect to a remote
SMTP server. This is because the SMTP server demands that users authenticate their selves.
Authentication normally happens during the establishing of the PPP connection with the ISP server of
this email account. Because a username and password aren’t used when establishing a GPRS
connection, this results in an authenticating problem.
On many SMTP servers this problem can be solved as follows. Use 'sendmail_authenticated' or
before connecting to the SMTP server, a connection should first be made with the POP-server of the
used email account to let the terminal authenticate itself at the mail-server. To do this, use the
getmail(&pop,POP_INIT)-function with the IP-address of the POP-server and a valid username and
password of the email account.

APPENDIX E: Manually establish a TCP/IP
connection

Normally a TCP/IP connection is established using one the following three functions of this library.

• connect (See chapter 3.2)
• connect_additional_Atcommand (See chapter 3.3)
• connect_ user_specified_Atcommand (See chapter 3.4)

However in some special situations these functions aren’t sufficient to establish a working TCP/IP
connection. If this is the case the TCP/IP connection can also be established manually.

For instance, when you need to establish a GPRS connection with a GPRS/GSM modem, additional
initializations sometimes need to be executed to register the modem to the mobile network.
Because these initializations consist of multiple steps, they can’t be executed with the standard
connect-functions. Therefor the establishing of the TCP/IP connection will need to be performed
manually.

When establishing a TCP/IP connection manually the following 5 steps need to be followed:

1. Open the correct serial port of the OPH100x or the H13 using the function ‘comopen’

COM-port Description
COM1 Cradle / IrDA dongle
COM2 Cradle

2. Initialize the modem with (AT-)commands and check for the desired response.

The following two functions of this library can be usefull to do this:
• transmit AT-commands to the modem: sendstring()
• wait for a certain response of the modem: checkstring()

void sendstring(const char *string) Transmit as string to the modem.

int checkstring(const char *string,
 int timeout,unsigned char abort_key)

Waits till the desired response is received from
the modem or the time out has passed.
(Also automatically checks for standard modem
error messages like: NO CARRIER and NO
DIALTONE)

Example:

sendstring("ATZ\r"); // Send Reset-command

if(checkstring("OK", 100, Q1_KEY) != OK) // Wait for "OK" for 2 seconds.
return ERROR;

3. Establish the connection with the ISP or GPRS provider

Transmit the dial or connect command to the modem, which also can be done using the sendstring()-
function.

To connect to an ISP server most modems use the AT-command:

ATDT<telephone number>

To connect to a GPRS server most mobile modems use the AT-command:

ATD*99***1# or ATD*99#

4. Wait for the result of the ATD-command

Wait for the desired response of the modem, which can be done using the checkstring()-function.
The normal response of a modem after it has established a connection is: ‘CONNECT’.

Example:

//Wait for ‘CONNECT’
if (error=checkstring("CONNECT", 3000, Q1_KEY) != OK)

return ERROR;

5. Register the connection to the TCP/IP library

After the connection has been successfully established it must be registered to the TCP/IP library by
using the function ‘register_manual_connection’ (See chapter 3.5).

Example:

struct isp_config isp;
int result;

isp.phonenumber[0] = '\0'; //Not necessary because your already connected
isp.user[0] = '\0'; //Most GPRS providers do not demand the
isp.pass[0] = '\0'; //use of a ISP username & password

isp.com = COM1; //Specifies COM-port that the current
//connection is using

isp.abort_key = Q1_KEY //Specifies the abort-key

register_manual_connection(&isp); //Register the manually made connection
//to the TCP/IP library

#include <stdio.h>
#include <string.h>
#include "lib.h" // Declares some functions and addresses of the terminal
#include "internet.h" // This is the header file of the TCP/IP library

struct isp_config isp;
struct dns_config dns;

int check_network_registration(int timeout, unsigned char abort_key);

void main(void)
{

int error, i, connected;

cursor(NOWRAP); // Don’t use auto-wrap
TCPIP_init(1,0); // Initialize TCP/IP library
systemsetting("SZ"); // Baudrate: 115200bps

for(;;)
{ setfont(LARGE_FONT, NULL);

printf("\f\nConnecting...");
connected = 0;

if(comopen(COM2)==OK) //Open comport of cradle
{ sendstring("ATZ\r"); //Reset Modem

if(checkstring("OK", 100, Q1_KEY) == OK) //Wait for "OK"
{

sendstring("ATE0\r"); //Set Echo off

if(checkstring("OK", 100, Q1_KEY) == OK) //Wait for "OK"
{ //Check if modem is registered to mobile network

error=check_network_registration(50, Q1_KEY);

if(error > 0 && error != 1)
{ //Sending the WRONG PIN-code can cause your SIM to be blocked!

//Replace '0000' by the correct PIN-code!
sendstring("AT+CPIN=0000\r");

if((error=checkstring("OK", 100, Q1_KEY)) == OK)//Wait for "OK"
{

sendstring("AT+CREG=1\r"); //Register to network attempt
error=checkstring("OK", 100, Q1_KEY); //Wait for "OK"

}
if(error == OK)
{ i = 0;

//Wait till registered to network
while((error=check_network_registration(50, Q1_KEY)) != 1)
{

if(error < 0) break; //Error

while(!endtimer()) idle(); //Wait till time out passed

if(++i >= 30) break; //Time out after 30 seconds
}

}
}
if(error == 1) //Registered to mobile network
{ //Initialize GPRS settings

sendstring("AT+CGDCONT=1,\"IP\",\"internet\"\r");

if(checkstring("OK", 100, Q1_KEY) == OK) //Wait for "OK"
{

sendstring("ATD*99***1#\r"); //Connect to GPRS

//Wait for CONNECT
if (error=checkstring("CONNECT", 1500, Q1_KEY) == OK)

connected = 1; //Connected to GPRS!
}

}
}

}
}

if(connected)
{

isp.phonenumber[0] = '\0'; // Not necessary because your already connected
isp.user[0] = '\0'; // Most GPRS providers do not demand
isp.pass[0] = '\0'; // the use of a ISP username & password

isp.com = COM2; //Specify the COM-port of the connection

isp.abort_key = dns.abort_key = Q1_KEY; //Specify the abort-key

setfont(SMALL_FONT, NULL);
printf("\f");

//Register manually made GPRS connection to TCP/IP library
error=connected_manually(&isp);

if (error < 0)
printf("\fError: %d",error);

else if((error = get_local_IP_address(&dns, 30)) < 0)
printf("\fError: %d",error);

else
{

printf("\fConnect: OK");
printf("\nAssigned IP:\n %d.%d.%d.%d", dns.IP1,dns.IP2,dns.IP3,dns.IP4);

}

disconnect(&isp); //Close the connection and the COM-port
}
else
{

printf("\nFailed");
comclose(COM4);

}

while(!kbhit()) idle();
}

}

int check_network_registration(int timeout, unsigned char abort_key)
{

int c;

sendstring("AT+CREG?\r");

if((c=checkstring("CREG", timeout, abort_key)) != OK)
return c;

starttimer(timeout); // After Time Out Return negative...

while(1)
{

if(endtimer())
return(ERR_NORESPONSE);

if((c=getcom(1)) != EOF)
{

if(c == ',') // CREG: <mode>,c
{

while(1)
{

if(endtimer())
return(ERR_NORESPONSE);

//1 = connected, 0 and 2 not connected
if((c=getcom(1)) >= '0' && c<='2')

return (c - '0');
}

}
}

}
}

APPENDIX F: Test Results

This appendix includes all the successfully tested ISP, FTP, POP, SMTP and DNS servers, using a
serial connection with an external modem

Dialup servers / ISP’s (including their primary and secondary DNS servers)

 ZONNET : 06760 - 75030
 XS4ALL : 020 –5350535
 RAKETNET : 06760 - 50300
 12MOVE : 06760 - 77777
 WANADOO : 06760 - 22205
 FREE ACCESS : 023 - 7430000
 DIRECT internet : 06760 - 12321
 FREE.FR : 0033 - 173922000

FTP servers

 ZONNET : ftp.home.zonnet.nl [062.058.050.014]
 12MOVE : home.12move.nl [062.035.014.015]
 WANADOO : home.wanadoo.nl [194.134.035.012]
 IFRANCE : ftp.ifrance.com [062.039.122.012]
 RAKETNET : ftp.raketnet.nl [213.197.030.200]
 XS4ALL : reflectix.xs4all.nl [194.109.006.026]
 OVfiets.nl : ftp.OVfiets.nl [212.204.242.076]
 FREE.fr : ftpperso1-2.free.fr [213.228.000.170]
 NMPP.fr.ft : paramdiffuseurs.nmpp.fr [172.017.000.004]

POP servers

 ZONNET : pop3.zonnet.nl [062.058.050.010]
 12MOVE : pop3.12move.nl [195.241.076.041]
 WANADOO : pop.wanadoo.nl [194.134.035.136]
 IFRANCE : pop3.ifrance.com [062.039.122.017]
 RAKETNET : pop3.raketnet.nl [213.197.030.201]
 XS4ALL : pop.xs4all.nl [194.109.006.055]

SMTP servers

 ZONNET : smtp.zonnet.nl [062.058.050.046]
 12MOVE : smtp.12move.nl [195.241.076.179]
 WANADOO : smtp.wanadoo.nl [194.134.035.138]
 IFRANCE : smtp.ifrance.com [062.039.122.20]
 RAKETNET : smtp.raketnet.nl [213.197.030.201]
 XS4ALL : smtp.xs4all.nl [194.109.006.051]
 OPTICON : mail.opticon.nl [080.073.128.038]

Equipment used
Terminal : OPH1003, OPH1004 and H13 with their cradles
Modem : Dynalink 1456E-R2 external 56k modem

Tornado V90 external 56k modem
Siemens MC35I GSM/GPRS modem
Opticon Ethernet box

Adapter : 25-pins male gender changer
25-pins NULL modem
2x '9-pins male to 25-pins female' connector

APPENDIX G: NTP Time servers

The NTP implementation in this TCP/IP library has been successfully tested with over 250 NTP
servers around the world.

A list of NTP servers can be found on the following URL (Note that not all the servers on this website will
wortk with this library!). http://ntp.isc.org/bin/view/Servers/WebHome

http://ntp.isc.org/bin/view/Servers/WebHome

	1.Introduction
	1.1.This manual

	2.Using the TCP/IP Library for the OPH100x and H13
	2.1.Selection and setup of the modem
	2.2.Connecting the modem
	2.3.Making a GSM / GPRS connection with a mobile phone
	2.4.Making an Ethernet connection with the Opticon Ethernet box
	2.5.How to include the library in your application software
	2.6.Parameters used by the library functions
	2.7.Calling the library functions

	3.TCP/IP Library Functions
	3.1.TCPIP_init
	3.2.connect
	3.3.connect_additional_ATcommand
	3.4.connect_user_specified_ATcommand
	3.5.register_manual_connection
	3.6.disconnect
	3.7.ftp_command
	3.8.ftp_connected
	3.9.getmail
	3.10.sendmail
	3.11.sendmail_authenticated
	3.12.get_host_by_name
	3.13.get_host_by_addr
	3.14.get_local_IP_address
	3.15.get_ISP_server_IP
	3.16.get_primary_DNS_server_IP
	3.17.get_secondary_DNS_server_IP
	3.18.set_primary_DNS_server_IP / set_secondary_DNS_server_IP
	3.19.get_NTP_time
	3.20.change_FTP_remote_port_nr
	3.21.change_SMTP_remote_port_nr
	3.22. change_POP_remote_port_nr
	3.23.tcpip_lib_version

	APPENDIX A: Error codes
	APPENDIX B: Serial connection from terminal to modem
	APPENDIX C: AT-command diagram of the connect-functions
	APPENDIX D: Making a GPRS connection with a mobile phone.
	APPENDIX E: Manually establish a TCP/IP connection
	APPENDIX F: Test Results
	APPENDIX G: NTP Time servers

